A Practical Hardware-Assisted Approach to
Customize Trusted Boot for Mobile Devices

Javier Gonzalez', Michael Hoélz1?, Peter Riedl?, Philippe Bonnet!, and René
Mayrhofer?

L IT University of Copenhagen, Denmark
{jgon, phbo}Q@itu.dk
2 University of Applied Sciences Upper Austria, Campus Hagenberg
{michael.hoelzl, peter.riedl, rene.mayrhofer} @fh-hagenberg.at

Abstract. Current efforts to increase the security of the boot sequence
for mobile devices fall into two main categories: (i) secure boot: where each
stage in the boot sequence is evaluated, aborting the boot process if a non
expected component attempts to be loaded; and (ii) trusted boot: where a
log is maintained with the components that have been loaded in the boot
process for later audit. The first approach is often criticized for locking
down devices, thus reducing users’ freedom to choose software. The second
lacks the mechanisms to enforce any form of run-time verification. In
this paper, we present the architecture for a two-phase boot verification
that addresses these shortcomings. In the first phase, at boot-time the
integrity of the bootloader and OS images are verified and logged; in the
second phase, at run-time applications can check the boot traces and
verify that the running software satisfies their security requirements. This
is a first step towards supporting usage control primitives for running
applications. Our approach relies on off-the-shelf secure hardware that is
available in a multitude of mobile devices: ARM TrustZone as a Trusted
Execution Environment, and Secure Element as a tamper-resistant unit.

Keywords: Secure Boot, Trusted Boot, Secure Element, TrustZone

1 Introduction

Today, mobile devices are designed to run a single Operating System (OS).
Typically, Original Equipment Manufacturers (OEMSs) lock their devices to a
bootloader and OS that cannot be substituted without invalidating the device’s
warranty. This practice is supported by a wide range of service providers, such as
telecommunication companies, on the grounds that untested software interacting
with their systems represents a security threat3. In the few cases where the OEM
allows users to modify the bootloader, the process is time consuming, requires a
computer, and involves all user data being erased*. This leads to OEMs indirectly
deciding on the functionalities reaching the mainstream. As a consequence, users

3 http://news.cnet.com/8301-17938 _105-57388555- 1 /verizon-officially-supports-
locked-bootloaders/
4 http://source.android.com/devices /tech /security /

http://news.cnet.com/8301-17938_105-57388555-1/verizon-officially-supports-locked-bootloaders/
http://news.cnet.com/8301-17938_105-57388555-1/verizon-officially-supports-locked-bootloaders/
http://source.android.com/devices/tech/security/

seeking the freedom of running the software that satisfies their needs, tend to
root their devices. However, bypassing the security of a device means that these
users lose the capacity to certify the software running on it. This represents a
risk for all parties and services interacting with such a device [17,21].

This topic has been widely discussed by Cory Doctorow in his talk Lockdown:
The Coming Civil War over General Purpose Computing [6]. Here, he argues that
hardware security platforms such as Trusted Platform Module (TPM) have been
misused to implement what he calls the lock-down mode: "Your TPM comes
with a set of signing keys it trusts, and unless your bootloader is signed by a
TPM-trusted party, you can’t run it. Moreover, since the bootloader determines
which OS launches, you don’t get to control the software in your machine.”. Far
from being taken from one of his science fiction dystopias, the lock-down mode
accurately describes the current situation in mobile devices: users cannot always
modify the software that handles their sensitive information (e.g. pictures, mails,
passwords), control the hardware peripherals embedded in their smart-phones
(e.g. GPS, microphone, camera), or connect to their home networked devices (e.g.
set-top boxes, appliances, smart meters). This raises obvious privacy concerns.

In the same talk, Doctorow discusses an alternative implementation for
hardware security platforms - the certainty mode -, where users have the freedom
to choose the software running in their devices, and the certainty that this
software comes from a source they trust. What is more, he envisions the use of
context-specific OSs, all based on the user’s trust. The issue is that the trust
that a user might have in a given OS, does not necessarily extended to the third
parties interacting with it (e.g., private LANs, cloud-based services, etc.).

In this paper we present an approach to allow users choosing the OS they
want to run in their mobile devices while (i) giving them the certainty that the
OS of their choice is effectively the one being booted, and (ii) allowing running
applications to verify the OS in run-time. Put differently, we extend Doctorow’s
certainty mode idea to all the parties interacting with a mobile device. While
modern Unified Extensible Firmware Interface (UEFI) platform support the
installation of new OSs and their corresponding signing key by means of the
BIOS, this is not the case for mobile platforms, where TPM is not present. The
same applies for user space applications doing integrity checks on the running
system. In order to address this issue in mobile devices we propose a two-phase
verification of the boot process: in the first phase, boot components are verified
and logged in the same fashion as trusted boot; in the second phase, the boot
trace can be checked by running applications in order to verify the running
OS. We base the security of our design in hardware security extensions present
on a wide range of mobile devices: ARM TrustZone as a Trusted Execution
Environment (TEE), and Secure Element (SE) as a tamper-resistant unit.

2 Related Work

The architecture of a secure boot process for desktop PCs was first proposed
by Arbaugh et al. in [3]. Their architecture, called AEGIS, describes a way to

verify the integrity of a system by constructing a chain of integrity checks. Every
stage in the boot process has to verify the integrity of the next stage. After
this first description of a secure bootstrap process, multiple specifications and
implementations of such a system have been created. One of the first specifications
that support this feature was proposed by the Trusted Computing Group (TCG)
in conjunction with the Trusted Platform Module (TPM) standard [22]. A TPM is
a secure cryptographic-coprocessor embedded in the PC architecture and provides
a set of functionalities, such as generation of cryptographic key-pairs, a random
number generator and protected storage. Trusted boot [7] is the implementation
which makes use of this hardware module to verify the boot sequence. A machine
running with trusted boot sends the hash of each following stage in the boot
sequence to the TPM where it will be appended to the previous hash. This creates
a hash chain, called Platform Configuration Register (PCR), that can be used
for various purposes. For example, it can be used to decrypt data only when the
machine reached a specific stage in the boot sequence (sealing) or to verify that
the system is in a state that is trusted (Remote Attestation). The TCG Mobile
Phone Working Group proposed a concept on how to implement such a trusted
boot also on mobile devices using a TPM-like hardware component called Mobile
Trusted Module (MTM) [19]. Another boot verification protocol is secure boot,
described in the UEFI specifications since version 2.2 [23]. UEFI secure boot
verifies the integrity of each stage by computing a hash and comparing the result
with a cryptographic signature. A key database of trustworthy public keys needs
to be accessible during boot time with which the signature can be verified. If
verification fails, the system will abort the boot process. Due to this reason, and
the fact that only a limited amount of keys are pre-installed on the platform, the
implementation of this system has been criticized of preventing users to install
an OS of their choice.

Although both systems, TPM trusted boot and UEFI secure boot, are widely
spread on desktop computers, they still did not reach the mobile platform:
the efforts to port UEFI to ARM devices - mainly driven by Linaro - have
been publicly restricted to ARMv8 servers, not considering mobile or embedded
platforms®. Also the MTM, though especially designed for mobile devices, has
not been integrated into current device hardware (except for the Nokia N900 in
2009). This leads to the necessity for different solutions in current off-the-shelf
mobile devices.

3 Background

3.1 Secure Hardware Support

The goal of the two-phase boot verification is to have a bootstrap architecture
that can be trusted and easily customized by the owner of the mobile device. For
our approach to be deployable only by means of a software update, it is necessary
that it is based on off-the-shelf secure hardware components already deployed in
mainstream mobile devices.

® http://www.linaro.org/blog/when-will-uefi-and-acpi-be-ready-on-arm/

http://www.linaro.org/blog/when-will-uefi-and-acpi-be-ready-on-arm/

Secure Element (SE). The SE is a special variant of a smart card, which is
usually shipped as an embedded integrated circuit in mobile devices together with
Near field Communication (NFC) [18] and is already integrated in a multitude of
mobile devices (e.g., Samsung Galaxy S3, S4, Galaxy Nexus, HTC One X, etc.).
Furthermore, a secure element can also be added to the device with a microSD
or an Universal Integrated Circuit Card (UICC). The main features of a SE are:
data protection against unauthorized access and tampering, execution of
program code in form of small applications (applets) directly on the chip and
the hardware supported execution of cryptographic-operations (e.g.,
RSA, AES, SHA, etc.) for encryption, decryption and hashing of data without
significant run-time overhead [12].

Trusted Execution Environment (TEE). A TEE is a secure environment
inside a computing device that ensures that sensitive data is only stored, processed
and protected by authorized software. The secure environment is separated by
hardware from the device’s area running the main OS and user applications,
which is denoted rich environment.

An example of TEE is ARM TrustZone [4]. TrustZone relies on the so-called
NS bit, an extension of the AMBA3 AXI Advanced Peripheral Bus (APB), to
separate rich and secure environments. The NS bit distinguishes those instructions
stemming from the secure environment and those stemming from the rich envi-
ronment. Access to the NS bit is protected by a gatekeeper mechanism referred
to as the secure monitor, which is triggered by the System Monitor Call (SMC).
The OS thus distinguishes between user space, kernel space and secure space,
where only authorized software runs in secure space, without interference from
user or kernel space. Also, any peripheral connected to the APB (e.g., interrupt
controllers, timers, and user I/O devices) can be configured by means of the
TrustZone Protection Controller (TZPC) virtual peripheral to have prioritized -
or even exclusive - access from the secure environment. Since TrustZone enabled
processors boot always in secure mode, secure code executes before the general
purpose bootloader booting the rich OS (e.g., u-boot) is even loaded in memory.
This allows to define a security perimeter formed by code, memory and peripher-
als, making TrustZone a good candidate to support trusted boot solutions as the
one presented in this paper.

While TrustZone was introduced 10 years ago; it is first recently that Trustonic,
Xilinx and others have proposed hardware platforms and programming frame-
works that makes it possible for the research community [8] as well as the industry
to experiment and develop innovative solutions with TrustZone.

3.2 Threat Model

The main motivating goal of our approach for a two-phase boot verification is to
give the user the certainty that the OS of their choice is indeed the one being
booted and that a malicious entity is not able to get access to sensitive data.
Hence, our threat model on mobile devices considers several kind of software and
hardware attacks:

Software Attacks. Our threat model for software attacks only concerns attacks
within the software stack of the mobile device. This includes attacks on application
level, OS level and down to kernel/driver level.

With the increase of mobile devices and amount of security sensitive appli-
cations running on them, we can expect a growing number of mobile malware
exploiting errors of the OS [15]. Attacks might be carried out to read sensitive
data within standard application permissions or - in the worst case -, exploit
privilege escalation [11,20]. Certain types of mobile malware are able to directly
infect the OS to achieve their malicious goal (i.e. rootkits). Communication
between applications, libraries, kernel drivers, etc. is also subject to different
kinds of attacks. Mobile malware such as trojans or viruses running on the device
might have the ability to interfere with the data path and gain full control over ex-
changed messages (e.g., service hijacking [5], library call interception [16]). This is
specially relevant when the communication affects hardware components handling
sensitive information (i.e., secure data path). An adversary seeking to compromise
the secure data path can be assumed to be able to perform various types of
attacks: eavesdropping, data injection, denial-of-service, man-in-the-middle, etc.

Hardware Attacks. As mobile devices become ubiquitous, the chances of them
being lost or stolen have increased substantially. This results in physical attacks
being increasingly relevant. Malicious hardware possession enables threats through
both physical tampering of the hardware and software modification of the device.
An attacker can take advantage of having physical access to the device to either
load a malicious OS or bootloader in order to bypass the hardware protection,
or directly attempt to access sensitive information (i.e., keys and secrets) from
secondary storage (e.g., flash memory). Even if the file system is encrypted using
tools provided by the OS, it is possible for an attacker with physical access
to the device to circumvent them [10]. Protection against these attacks using
hardware based solutions assuring tamper resistance have been proposed in order
to increase the protection of sensitive data on mobile devices [13].

4 Example Scenario

The solution we propose in this paper enables providers of services or applications
with security concerns to adapt an OS to meet their particular security require-
ments. This customized OS is offered by a trusted issuer; therefore we call it a
certified OS. Creating a certified OS could mean to restrict the installation of
applications, restrict network access, restrict access to hardware, etc. By allowing
users to exchange OSs that can be certified, we enable services and organizations
to establish restrictions concerning the software that interacts with their systems,
while preserving the user’s right to choose - and certify - the software handling
their personal information.

Bring Your Own Device (BYOD). One practical application for a certified
OS could be the BYOD problem. This refers to users wanting to interact from

their personal mobile devices with their company IT services. Recent studies show
that the BYOD problem is growing [1]. Given the heterogeneity of the current
mobile device OS landscape, this can create overhead for system administrators
and impede productivity. The multitude of different versions of each OS combined
with adaptions to the OS by hardware manufacturers create this fragmented OS
landscape. Concrete challenges include porting services to different platforms,
having to deal with platform-specific security threats, or increasing the complexity
of the enterprise LAN since the devices connecting to it cannot be trusted. By
using a customized OS that is preconfigured to interact with all company services,
enterprises could save time and money while increasing the security of their
services. The effort to adapt OSs can be reduced by supporting only one or few
versions of the most common OS (Android and iOS combined currently have a
market share of 96%°). When employees are not using company services, they
can switch to an OS they trust to handle their personal information. In this way
one single device can be used both privately and professionally with the minor
trade-off of having to switch OS.

The aforementioned BYOD applications serve as good examples for sensitive
data. All credentials needed to authenticate to enterprise services like email and
VPN private keys could be stored in the tamper resistant SE (see Section 3.1).
Access to that data would only be granted if the request comes from a certified
OS and all contextual requirements are met (e.g., being inside of the enterprise’s
VPN).

5 Architecture

Figure 1a depicts how hardware and software components interact with each
other in the two-phase boot verification. In normal operation, both, the rich
and the secure environment are booted. This is, the signatures of the mobile OS
and the OS bootloader (OSBL) have been validated by the SE. Note that the
verification process is carried out by the trusted execution environment (TEE),
consisting of its bootloader (TEEBL) and an OS (TEE OS), and the SE as root
of trust. Additionally, we assume the manufacturer bootloaders, first (FSBL) and
second stage (SSBL), also as root of trust components. Applications running in
the rich area can be installed and executed without restrictions just as we are
used to see in current mobile OSs. We do not make any assumptions regarding the
trustworthiness of these applications. We assume however that the secure tasks
running in the TEE can be trusted. We describe the communication between the
rich and the trusted execution environment in more detail in Section 3.1.

The SE is configured as a trusted peripheral and therefore only accessible
from secure tasks in the TEE. Note that while the SE is not a peripheral in
itself, it is connected via the APB (e.g., I2C, etc.), and therefore treated as such.
In this way, rich applications make use of secure tasks to access the SE. As a
consequence, if the TEE becomes unavailable, rich applications would be unable

5 http://www.idc.com/prodserv/smartphone-os-market-share.jsp

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

—— — Uncertified result

-s======= Desired path
Rich . Secure Secure element
environment } environment (SE) — — — Exchange 0S/0SBL

E‘ Secure tasks k::}\

A Manufacturer
Applications Trusted
soncr |
i 1 4 keys I
H Q ©
Mobem H EECE g ‘g‘ Hash of Secure environment & SE
: Sy boot o) (5) SE adds issuer
0SBL I log (2 verity os/osat)

! [0S/0SBL

ot
Secure element ' verified] (4) Display unverified [correct 5]
Manufacturer -— components,
oS ask for SS [wrong SS or
| Second Stage Bootloader (SSBL) | [0S/OSBL verified] canceled]

T
| First Stage Bootloader (FSBL) | Rich environment |
[T ,Root of trust” - components (=) SE to application processor B{;‘{?:g‘ arcli::;ngl --------- >©<— (\f/)i;y;\tﬁr;‘Er:::ei:f
[] Verified components communication via APB

(a) (b)
Fig. 1: Components of our proposed customizable two-phase boot verification for off-
the-shelf mobile devices in (a). The activity diagram in (b) describes the first phase.
Transitions show the desired path (dotted), an uncertified result (long-dashed) and
steps used for exchanging OS (dashed). “SS” stands for shared secret.

to communicate with the SE. The TEE becoming unavailable could be a product
of a failure, but also a defense mechanism against unverified software. If the
OS image cannot be verified, the OS would still be booted, however the TEE
will not respond to any attempt of communication. In this case we give up on
availability in order to guarantee the confidentiality and integrity of the sensitive
data stored in the SE (e.g., corporate VPN keys stored in the tamper-resistant
hardware). Finally, the TEE also serves as a medium between certificates of the
OS issuers in an untrusted storage (e.g., SD card, flash memory) and the SE.
This gives users the option to add additional trusted public keys to the SE when
the first-phase verification failed (see Section 5.3 for details).

5.1 First phase verification

The first phase verification is responsible for verifying and starting the TEE
and the OS, and for enabling the user to install a customized OS and flag it as
trusted. Figure 1b depicts the process (numbers in the diagram correlate with
the enumeration, borders indicate which component is responsible for each step).

1. The user presses the power button. FSBL, SSBL, and TEE are started.

2. The TEE attempts to verify OS/OSBL by sending their signatures and the
hash of the images to the SE. The SE attempts to verify the signatures with all
trusted public keys of OS/OSBL issuers and compares it to the received hash.
The result of this operation is reported to the TEE. In addition, the hash of
the booted OS for the second-phase is stored in the SE. Several hashes using
different algorithms are calculated to better support phase two (Section 5.2).
Since the images can be cached, the transmission cost is only paid once.

3. Once the OS/OSBL are verified, the OS is booted with full access to the SE
through the TEE. This is the end of the expected course of actions.

4. If the verification of OS/OSBL (step 2) fails, a message, explaining which
component is unverified, is displayed. Now the user can choose to either certify
the OS/OSBL by entering the shared secret and provide an issuer certificate, or
continue to boot the uncertified OS/OSBL. For further details see Section 5.3.

5. If a legitimate user (authenticated by shared secret) flags an OS/OSBL as
trusted, the SE adds the public key of the issuers’ certificate to the list of
trusted keys and continues to verify the newly added OS.

6. If the user enters a wrong shared secret or cancels the operation, the uncertified
OS/OSBL is booted without access to the SE and a message informs the user
about the uncertified state. This is the end of the uncertified course of actions,
where the user can still use the device (uncertified OS/OSBL is booted), but
due to missing verification, access to the secured data is denied by the TEE.

This architecture ensures that only a combination of verified OS and OSBL
are granted access to the SE. If one of the components is not verifiable, the device
can still be used (uncertified OS is booted), but access to the SE is denied. In the
first phase all executed commands are logged in the SE by maintaining a hash
chain. This approach is similar to trusted boot, and enables the second phase
verification. The process of installing custom OS is explained in Section 5.3.

5.2 Second phase verification

In the second phase verification, rich applications can verify the system in which
they are running before executing. To do this, rich applications make use of a
secure task in the TEE to validate the running OS by checking the boot traces in
the SE. This secure task is not application-specific, but a secure system primitive
that any rich application running in user space can request to use.

In ARMv7, the SMC call needs to be issued from a privilege mode; this
means that either the user application executes a Supervisor Call instruction
(SCV) to enter in supervisor mode, or the SMC call stems from a place already
executing in privilege mode. Relying on user applications to call the monitor and
handle the communication with a secure task that is shared among different user
applications can compromise the verification coming from the secure environ-
ment (e.g., by compromising application binaries). Another alternative would be
letting applications handling the boot trace verification by having each of them
implementing their own secure task. However, this solution would not only result
in code replication, but in an unnecessary increase of the Trusted Computing
Base (TCB), and therefore in the secure environment having a larger attack
surface. Also, any update concerning the verification of the boot trace would
need to propagate to many different secure tasks, therefore slowing down the
dissemination of critical security patches’. By defining the system verification as

" Cases like the Heartbleed Bug (http://heartbleed.com) are good examples of how a
rapid dissemination of a security patch is necessary.

a system primitive, the kernel makes the process transparent to user applications,
addressing all these issues. This approach does not assume the kernel to be
trusted; on the other hand, it limits the attack surface to the communication
channel (the kernel), avoiding sensitive code to be delegated to user space. In
Section 6 we address this is detail as part of the security analysis.

In this way, rich applications can communicate with the kernel, who forwards
the call to the secure task that verifies the OS image. Rich applications pass
the list of hashes they trust and a parameter defining the hash algorithm used
to calculate them (e.g., SHA, DJB2, MD5). This allows for several hashing
algorithms being supported and new ones being easily introduced. When the
secure task executes, it request the OS image hash to the SE specifying the
algorithm, and compares it with the hashes trusted by the rich application calling
it. If the hash using the required algorithm is not precomputed, the TEE requests
a reboot and adds the algorithm to the SE. Applications can also verify the boot
traces to check that all the components they require (e.g., biometric sensor) have
been correctly initialized. As a result, rich applications are able to make decisions
in run-time depending on both the OS and the available peripherals. This can be
seen as a first step towards supporting usage control.

Since the SE is configured as a trusted peripheral, rich applications cannot
directly communicate with it; they need to do it through the TEE. Additionally,
the SE signs the retrieved hashes using its own private key in a similar manner
as the TPM using the Attestation Identity Key (AIK). To distribute the cor-
responding public keys of the SE, an infrastructure similar to other public-key
infrastructures is required (e.g., openPGP).

5.3 Exchange OS/OSBL

We share the concern that current secure boot implementations necessarily
lock devices to a specific OS chosen by the OEM. In order to avoid this in our
architecture, we propose the configuration mode. TEEs are suitable candidates
to implement this mode, since they support features for secure user interactions
(see Section 3.1). The sequence of actions for the configuration mode starts by
the user flashing a new mobile OS or OS bootloader (e.g., using uboot) with
a signature that is not trusted by the platform (public key of the OS issuer is
not in the list of trusted keys). As depicted in the transition from step 2 to 4 in
Figure 1b, the OS will not be booted in that case. The user will now be given
the possibility to either manually verify the signature of the new mobile OS or
cancel the process within a secure task of the TEE. In case of a requested manual
verification, the user will be asked to point to the certificate of the OS issuer
on the untrusted memory (e.g., SD card) and enter a shared secret within the
secure UI of the TEE (step 4 in Figure 1b). This shared secret could be a PIN
or password that has been shipped together with the SE. With an appropriate
secure channel protocol (e.g., SRP [24]), the user will be authenticated to the SE
and a secure communication between TEE and the applet will be established. If
the user does not want to verify the OS, the system would still be booted without
access to the sensitive data in the SE (step 6 in Figure 1b). After successful

authorization, the secure task sends the public key of the OS issuer to the applet,
where it will then be added to the list of trusted keys (step 5 in Figure 1b). If users
do not have access to the certificate, or do not want to completely trust the issuer,
they can also exclusively sign the specific OS instance with the private/public key
pair of the SE. Attacks attempting to flag an OS as trusted will fail as long as
the shared secret remains unknown to the attacker. An adversary could also try
to manipulate the certificate which is stored in the untrusted memory. However,
as the TEE has full network capabilities, it can verify the certificate validity with
a correspondent public-key infrastructure, such as the web of trust from PGP.

6 Security Analysis

There are four kinds of attacks that can be perpetrated against the two-phase
verification architecture design: (i) attacks against the manufacturer bootloaders
to prevent verifying and logging the loaded components during the boot process;
attacks against the TEE rich - secure interface through (ii) attacks against the
secure monitor, and (iii) attacks against the secure data path; and (iv) physical
attacks against the SE to steal the secrets stored in it. Most of the OS specific
services we describe either as exploits or defenses assume a Linux based OS.
While not all of these services are available in all OSs, they are conceptually
independent to a specific implementation.

Bootloaders. Since the root of trust begins with the FSBL and SSBL, a
sophisticated software attack that supplants the SSBL could prevent the boot of
a legitimate TEE, and therefore prevent the verification and logging of booted
components depicted in Figure 1b. While the attacker would gain control of
the device and the communication to the SE, the secrets stored in the SE
would remain inaccessible at first. Indeed, the SE applet is configured to wait
for a trusted system state, thus it will not reveal sensitive information if the
correspondent boot hashes are sent. The attacker would need to modify the SSBL
so that it is sending the hashes of a normal trusted boot. As the SE is only a
passive component, it does not have methods to verify the trustworthiness of the
source of a received message. Signing the messages would also not prevent these
attacks due to the inability to securely store the private key on the mobile device.
While intricate, the attack is theoretically possible. However, we assume that the
SSBL is locked by the OEM and additionally verified by the FSBL, as it is the
case in current devices. Still, the lack of source verification capability of the SE
applet remains an open challenge for the research community. If an attacker only
substitutes the OS bootloader, an untrusted OS would be booted without access
to the SE. This is already one of the scenarios contemplated as normal operation
(i.e. step 6 in Figure 1b).

Secure Monitor. The secure monitor is in charge of switching between the
rich and secure environments, thus representing TrustZone’s most vulnerable
component. If compromised, illegitimate applications could run while the processor

is executing in secure mode. This involves prioritized access to all peripherals and
memory. The fact that the SMC call for ARMVv7 architectures is implemented
in software together with the lack of a standard implementation has led to bad
designs like the one reported in October 2013, affecting Motorola devices running
Android 4.1.2. (The attack reached the National Vulnerability Database and
scored an impact of 10.0 (out of 10.0)%, and it can be found in the attacker’s blog?).
For ARMv8, however, ARM is providing an open source reference implementation
of secure world software called ARM Trusted Firmware. This effort includes
the use of Exception Level 3 (EL3) software [9] and a SMC Calling Convention.
Organizations such as Linaro are already pushing for its adoption.

Secure Data Path. Attacks to the data paths between rich applications and
secure tasks fall into three main categories: channel hijacking, man-in-the-middle
(MITM), and denial of service (DoS). Since the SMC call has to stem from
a privilege mode, the kernel will always lead the rich-secure communication.
This represents a threat since an attacker with root access to the system could
modify the kernel at run-time to intercept a data path. Examples of possible
attacks include: superseding the return of a secure task, manipulating a rich
application’s internal state and/or memory (e.g., by using ptrace), or attempting
a return-oriented programming (ROP) attack. These attacks are only viable if
root can inject code to the kernel and access the system’s main memory. However,
if loadable kernel models such as Linux’s LKMs, and access to kernel and physical
memory (/etc/kmem and /dev/mem respectively) are disabled, these attacks are
not possible. We consider that in the context of mobile devices it is not common
to dynamically load and unload kernel modules, and therefore enforcing a static
kernel at run-time is a fair compromise. Indeed, popular mobile OSs such as
Android are beginning to take similar steps towards limiting kernel functionality;
from Android 4.3 debugging tools such as ptrace are restricted by SELinux 1,
making application code more deterministic and resilient to manipulation and
hijacking. If we assume that the OS image that is verified at boot time can be
trusted, the fact that the kernel cannot be modified at run-time allows us to
guarantee that once a system call is being processed in kernel space, an attacker
would not be able to tamper with the secure data paths that the kernel establishes
with the secure area. This technique has been used before to protect the kernel
from a malicious root [25] [14]. Under this scenario, if rich applications make use
of secure system primitives to evaluate the running system and access peripherals
securely, and secure tasks to access sensitive data and communicate with their I'T
infrastructure, channel hijacking and MITM attacks can be prevented. Finally,
we consider that preventing DoS attacks when using TEEs is a challenge, and an
interesting topic for future research.

Hardware attacks. TrustZone is not tamper-resistant, and while SEs are
tamper-resistant, they are not tamper proof. The assumption here should be that

& http://web.nvd.nist.gov/view /vuln/detail?vulnld=CVE-2013-3051
9 http://blog.azimuthsecurity.com /2013 /04 /unlocking-motorola-bootloader.html
0 http://lwn.net/Articles/491440/

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-3051
http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
http://lwn.net/Articles/491440/

with enough time, money and expertise and attacker could steal the secrets in the
SE by means of a sophisticated physical attack (e.g., a laboratory attack). Having
physical access, such a sophisticated attack to reveal the secrets in the SE would
mean to either break the security methods (e.g., lock screen) of the running and
trusted OS or to imitate a trusted system state to the SE. In the second case, the
adversary would need to remove the SE in order to be able to bypass the TZPC,
and directly send the boot hashes of the original trusted system to the applet.
The SE applet does not have the capability to detect the malicious source of the
boot hashes and would therefore grant access to the sensitive data.

7 Conclusion

In this paper, we introduce a two-phase boot verification for mobile devices. The
goal is to give users the freedom to choose the OS they want to run in their
mobile devices, while giving them the certainty that the OS comes from a source
they trust. We extend this certainty to running applications, which can verify the
environment where they are executing. This is a first step towards usage control.
By not locking devices to specific software, users can switch OSs depending
on their social context (e.g., work, home, public network). This protects user’s
privacy, as well as service providers from untrusted devices. We contemplate this
as a necessary change in the way we use mobile devices today, and a natural
complement to multi-boot virtualization architectures like Cells [2]. One device
might fit all sizes, but one OS does definitely not. Finally, since our approach
is based on off-the-self hardware, it can be implemented in currently deployed
mobile devices.

Acknowledgements. This work has been carried out within the scope of u’smile,
the Josef Ressel Center for User-Friendly Secure Mobile Environments. We grate-
fully acknowledge funding and support by the Christian Doppler Gesellschaft, Al
Telekom Austria AG, Drei-Banken-EDV GmbH, LG Nexera Business Solutions
AG, and NXP Semiconductors Austria GmbH.

References

1. The Privacy Engineer’s Manifesto. Number p. 242 - 243. Apress, 2014.

2. J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: a virtual mobile
smartphone architecture. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 173-187. ACM, 2011.

3. W. Arbaugh, D. Farber, and J. Smith. A secure and reliable bootstrap architecture.
In Symposium on Security and Privacy, pages 65—71, May 1997.

4. ARM Security Technology. Building a secure system using trustzone technology.
Technical report, ARM, 2009.

5. E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in android. In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys 11, pages 239-252, New York,
NY, USA, 2011. ACM.

6

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

C. Doctorow. Lockdown, the coming war on general-purpose computing.

M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital distributed
system security architecture. In Proceedings of the 12th National Computer Security
Conference, pages 305-319, 1989.

J. Gonzalez and P. Bonnet. Towards an open framework leveraging a trusted
execution environment. In Cyberspace Safety and Security. Springer, 2013.

J. Goodacre. Technology preview: The armv8 architecture. white paper. Technical
report, ARM, 2011.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold-boot
attacks on encryption keys. Commun. ACM, 52(5):91-98, May 2009.

S. Hoébarth and R. Mayrhofer. A framework for on-device privilege escalation
exploit execution on android. Proceedings of IWSSI/SPMU (June 2011), 2011.
M. Hoélzl, R. Mayrhofer, and M. Roland. Requirements for an open ecosystem for
embedded tamper resistant hardware on mobile devices. In Proc. MoMM 2013:
International Conference on Advances in Mobile Computing Multimedia, pages
249-252, New York, USA, 2013. ACM.

S. Khan, M. Nauman, A. Othman, and S. Musa. How secure is your smartphone:
An analysis of smartphone security mechanisms. In Intl. Conference on Cyber
Security, Cyber Warfare and Digital Forensic (CyberSec ’12), pages 76-81, 2012.
S. T. King and P. M. Chen. Backtracking intrusions. In ACM SIGOPS Operating
Systems Review, volume 37, pages 223-236. ACM, 2003.

M. La Polla, F. Martinelli, and D. Sgandurra. A survey on security for mobile
devices. IEEE Communications Surveys Tutorials, 15(1):446-471, 2013.

H.-c. Lee, C. H. Kim, and J. H. Yi. Experimenting with system and libc call
interception attacks on arm-based linux kernel. In Proceedings of the 2011 ACM
Symposium on Applied Computing, pages 631-632. ACM, 2011.

S. Liebergeld and M. Lange. Android security, pitfalls and lessons learned. Infor-
mation Sciences and Systems, 2013.

G. Madlmayr, J. Langer, C. Kantner, and J. Scharinger. NFC' Devices: Security
and Privacy, pages 642-647. 2008.

Mobile Phone Work Group. TCG mobile trusted module sepecification version 1
rev 7.02. Technical report, Apr. 2010.

S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna. Execute this!
analyzing unsafe and malicious dynamic code loading in android applications. In
Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2014.

J. Rouse. Mobile devices - the most hostile environment for security? Network
Security, 2012(3):11-13, 3 2012.

Trusted Computing Group. TPM main specification version 1.2 rev. 116. Technical
report, Mar. 2011.

Unified EFI. UEFI specification version 2.2. Technical report, Nov. 2010.

T. Wu. The secure remote password protocol. In Proc. of the 1998 Internet Society
Network and Distributed System Security Symposium, pages 97-111, Nov. 1998.
G. Wurster and P. C. Van Oorschot. A control point for reducing root abuse of
file-system privileges. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 224-236. ACM, 2010.

	A Practical Hardware-Assisted Approach to Customize Trusted Boot for Mobile Devices

